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Abstract

We give new existence conditions of solutions for Duffing equations at resonance
using some results in [2].

1. Introduction and Main Results

Consider the BVP at resonance

x"+k2n2x+g(t,x)+ h(t,x)=0, (1.1)

x(0) = 0 = x(1), (1.2)
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where g, h:[0,1]xR — R are Caratheodory functions, k is a fixed
natural number. There exists h e L*[0, 1] such that

|h(t, x)| < h(2), for ae. t €[0,1], x € R. (1.3)
And we will use the following conditions:

(L; ) There exists a constant 7y > 0 and q € L*[0, 1] such that

lim sup g(¢, x) / x < q(2), (1.4)

X —>0

uniformly for a.e. ¢ € [0, 1], and
gt, x)x 20 for | x| = ry, a.e. t €0, 1]. (1.5)
(Lg)

j £.()u(e)dt + j f()o()dt > 0, (1.6)
v>0 v<0

where v = tsinknt, t € [0, 1], f = g + h, f,(t) = lim inf f(¢, x), f-(¢) =
X —>+0

lim sup f(¢, x).

xX—>—0

As in [2], we write b € H,(1, (0, 1), 0, =), if and only if the problem
x"+bt)x = 0, 1.7
x(0) = 0 = x(1)

has a nontrivial solution with exactly n zeros on (0, 1). The main result of

this paper is the following:

Theorem 1. Assume that g, h:[0,1]xR — R are Caratheodory
functions such that conditions (1.3), (L), and (Lgy) are valid. Then (1.1-

1.2) has at least one solution provided that
E2n? 4+ q < qp, (1.8)

for some q;, € Hi(1, (0, 1), 0, n).
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This result is inspired and improves by Kuo [5], who showed by
making use of a Lyapunov type inequality and the well-known Leray-
Schauder continuation method, that (1.1-1.2) has at least one solution if
(1.3), (L), and (Lg ) are satisfied and

1
JO q(t)dt < 2k(k +1) 7 tan ﬁ (1.9)

We will show that (1.9) is a special case of (1.8). In fact, we prove that if

(k+1)m-vA

1
322 2.2
q>A-kn ,qu(t)dt <A-k*n* + 2JA(k +1)tan S+

(1.10)
where A e (K2, (k +1)?n2), then (1.8) is satisfied. And (1.9) is a
special case of (1.10) as A — k?r? +0. Moreover, some sufficient
conditions of Theorem 1 will be given such that J.;q(t)dt could be large

enough with % fixed, and hence they could be applied to some new cases.

We finally emphasize that condition (1.8) is not only a sufficient one
but also a necessary one, that is, for g, h satisfying (1.3), (L7 ), and (Lg)

(1.1-1.2) has at least one solution, if and only if (1.8) is satisfied. In
addition, condition (1.8) is not more difficult to verify than (1.9). In fact,
we only need to estimate the value at ¢ =1 of the unique solution of the

problem (2.1-2.2) in the next section.
2. Proof of Theorem 1

In this section, we will finish the proof of Theorem 1. To this end for

b e L”[0, 1] we consider the initial value problem
¢ = cos? ¢ + b(t)sin? ¢, (2.1)

$(0) = 0. (2.2)

Denote the unique solution of (2.1-2.2) by ¢ = d(z, b).
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Lemma 1. b € H,(1, (0, 1), 0, n), if and only if ¢(1, b) = (n +1) .
Proof. Refer to [4, Chapter 11, Lemma 3.1].

Lemma 2. Assume that {q,} c L*[0, 1], @ € L*[0, 1] are such that
lg, @) < Q) for ae. t €[0,1], n =1,2,3, -+, and q,(t) > q(t) for ae.
t € [0, 1]. Then ¢(t, q,,) = &(t, @) uniformly for t € [0, 1].

Proof. Refer to [4, p.4, Theorem 2.4].

Lemma 3. Assumethat q;, q3 € L*[0, 1] are such that q; < q5. Then
&(t, q1) < ¢(t, q9) for t €0, 1]. In addition, assume that q; < q5. Then

we have §(1, 1) < ¢(1, g2).
Proof. Refer to [4, Corollary 4.2] or [2, Lemma 5].

Remark 1. From Lemmas 1, 3, and [4, Chapter 8, Theorem 2.1] it
follows that (1.8) is equivalent to

o1, g+ E2n?) < (k+1)m
Lemma 4. Assume that (1.8) is satisfied with q > 0. Then there exists

¢ >0 such that for every b e L7[0,1] with k*n® <b < q + k2% + 2,

(1.7-1.2) has only the trivial solution.

Proof. By Lemmas 1, 3, and condition (1.8), we have
o1, B2 +q) < 0(1, gp) = (R + D) m
From Lemma 2 there exists ¢ > 0 such that
o1, E2n? +q+2) < (k+1)m
Therefore, for every b € L*[0, 1] with k2% < b < k%n? + ¢ + 2¢, we have
from Lemmas 1, 3 that
k= o1, k272) < ¢(1, b) < ¢(1, K22 + g+ 2¢) < (B + 1)

And hence, the conclusion follows from Lemma 1. ]
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Lemma 5. Assume that {y,} c WO2’1[O, 1], y,(t) > sin knt(inC
[0, 1]). Then there exists {u, } WOZ’I[O, 1], such that u,(t) — sin knt in
c'lo, 1],
u,(t)y,(t) = 0 for t € [0, 1], n large enough,

and
1
j up (t) [y (t) + k2n?y, (t)]dt = 0, n large enough.
0

Proof. Directly follows from [1, pages 412-413].

Proof of Theorem 1. In view of the Leray-Schauder principle, we
only need to show that the possible solutions of the following auxiliary

problem are a priori bounded:
x"+ k2n%x 4 hex + (1 - 1) [g(t, x) + A, x)] =0, & < (0, 1),
x(0) = 0 = x(1).
By contradiction, suppose that {x,} c WO2’1[0, 1] with |x, |} — +o, {%,}
c (0, 1) are such that
x! + k2n’x, + hex, + (1 —4)[g(t, x,)+ h(t, x,)] = O, (2.3)
x,(0) = 0 = x,(1). (2.4)
From (L; ) there exists r; > rp such that
gt x)/x < q(t)+e (2.5)
fora.e. t € (0,1), x € R with |x| = r.
Set
In() = 2, () |xn 2.6)

Mn(t) = g(t’ xn(t))/xn(t) as |xn(t)| 2rn 2.7
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=0 as |x,(@) < n, (2.8)
and
hn(t) = 8(t, 2, (t)) + h(t, x,(2)) = 1 (2).
From (1.3) and (2.5) we have
0<p, <q+e (2.9)
|h, (t)| < R () for ae. t € (0,1),n =1,2,3, -, (2.10)

where h e L0, 1], and (2.3-2.4) is equivalent to

v+ B2y, hpey, + (L= R i @y + (=2 |2, [ R (6) = 0, (2.10)
yn(o) =0-= yn(l)' (2.12)

By (2.6-2.7), [3, Theorem 8.8] and Ascoli-Arzela’s theorem, we can assume
by going to subsequence if necessary that p, ~po in L*[0, 1] with
0<pg<q+ey, >y in C0,1] and A, — Ay € [0, 1]. Integrating
(2.8) over [0, #] for every ¢ € (0, 1] and taking the limit as n — o, we

have
yh + [B*n + dge + (1= 2o Juo(®)lyo = O,
50(0) = 0 = yo(1).
From Lemma 3 we have that Ay = 0, ug = 0, and
yo + k2n2y0 =0,

¥0(0) = 0 = yo(1).

Since y,, — yg by Lemma 5 there exists u,, such that u, — ygy in

Co, 1], u,(t)y,(t) = 0 for t e [0, 1], n large enough and

1
I u, () [y1 (t) + k2n2y, (t)]dt = 0, nlarge enough.
0
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Noticing that f = g + h, from (2.3) and (Ly) we have

[t 5 @)anerde = [ Tete, %00 + At 5 0)un 01t < 0,
0 0

large enough.
In view of (1.3-1.4) there exists F e L'[0, 1] such that
f(t, x,(t)) > F(t), for a.e. t € [0, 1], n large enough.

Using Fatou’s lemma, we have

[ rwso®de+ | r@yo@a < timint | (b 2 @)un(t)dt < 0,
¥0>0 n—wo Jo

¥0<0

a contradiction to (1.6). The proof is complete. [
3. Examples

In this section, we will give some applications of Theorem 1.

Proposition 1. Assume that {t;}>" < [0,1] with 0=ty <t <

< tg, =1. Set

a(t) = n—2as t e (ti—l7 ti)a 1= 1, 2, e on.
4t —tiq)

Then q € H,_1(1, (0, 1), m).

Proof. When n =1 let

u(t) = sinﬁfbr t e [ty, 4] (3.1)
2((2 — tll)) for t e [t, ty], (3.2)

and when n > 2, let

n(t to)
2(t; —tg)

u(t) = sin for ¢ € [tg, t1 ]
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ot —t)

= cos ———~ L for t € [t], ty ]
2ty —t1) !
t9iv1 — g Y

= Zartl Al —(2j + ——=2L ) f

(H i tzl )sm 2( J+ t2]+1 — t2] ) or t € [t2]7 t2]+1]

toiv1 — to; T oo ~lgj+

=( f)cos—(2]+ — )fortE[t2j+1,t2j+2]’

T t2i ~tai 2 tojr2 —t2ji1

It is easy to verify that & has n—1 zeros on (0, 1) and

u'(t) + q(t)u()

0 for ¢ € (tl’ ti+1)7 = 1’ 2a ] 2n - 1.
u(0)=u(1)=0
Therefore, ¢ € H,,_;(1, (0, 1), n).

Remark 2. It is easily seen that

2n
1 2
_ 1 e 1
q(t)dt = — = )= >= 5> +4wast;y > 0.
[.a0 <i§1ti_ti_l>4 !

b

Therefore, we could give some new existence results for (1.1-1.2)
compared with (1.9).

Proposition 2. Assume that q € L”[0, 1] satisfies (1.10) for some
constant A e (k%n?, (k+1)2n2). Then q satisfies (1.8) for some q; €
H.(, (0, 1), 0, ).

Proof. From [6, Theorem 1.3], if q satisfies (1.10), then (1.7-1.2) has
only the trivial solution for b e L*[0,1] with A < b < k?r® +¢. Since
A e (E*n%, (k+1)%n?), we have ¢(1, A) e (kn, (k +1)n). By Lemmas 1-3,

we have that ¢(1, k2n? + q) < (k + 1)m. The proof is complete. n
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(k+1)n - JA
20k +1)

We have for A > k2n? that

¥(A) > v(E2n?) = 2k(k + 1)ntan2(kL+l).

Therefore, if (1.9) is valid, then there exists ¢ > 0 such that

[ Ol[q(t)+ Jdt < p(k2n?) < e + K2n2).

That is, (1.10) is satisfied. And hence (1.9) is a special case of (1.8).
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